CS 421 Lecture 12

» Compilation static languages, continued

Compiling in context (main for optimization)
Assignment
Break statements

Short-circuit evaluation of boolean expressions
Switch statements
Arrays

Code optimization

Thursday’s class: dynamic language execution via an
example: the Sun HotSpot runtime system — tagged
values; garbage collection

Lecture 12

Notation

» [S] = compiled code for S
» [e] = compiled code for e

» Use subscripts on brackets for additional arguments, e.g.
[S], is compiled code for S, assuming S occurs within a
switch statements labeled L.

Lecture 12

Assignment statements

» Old scheme: [x=e] =let (I,t) = [e] in |; x=t.
» Can give poor results: [x=3] = t=3; x=t

[x=x+1] = tl=1; t2=x+tl; x=t2
» Compile expressions in context of target location:

[e], = code to calculate value of e and
store it in x. [e], : instruction list

x=e] = [e]x
:n]x —_— “X=n”

y], = “x=y”, if y a different variable from x; €, otherwise

v Vv v Vv

el+e?], = let t = new location in [el]; [€2],; x=t+x

Lecture 12

break statements

» break statement breaks from one level of switch or
while. Cannot translate “break’” without knowing

context.

» [S], = code for statement S, given that S occurs inside a
switch or while statement, and L is the label just after
that enclosing statement.

Lecture 12

Boolean expressions

» Current scheme: boolean expressions evaluated like any other,
placing value in a temporary location:

[el<e2] =let (I,, tl) =[el], (I,, t2) = [e2], t = newloc()
in (I;1,; t=tl<t2, t)

[el && e2] =let (I, t]) = [el]
(I, 2) = [e2]
in (I;12; t=tl && t2, t)

[if e then S| else S2] = let (I, t) = [e]
in (I; CCUMP t LI L2;...)

- What'’s wrong?

Lecture 12

Boolean expressions w/ short-circuit evaluation

» Improved scheme:
[el && e2] = let t = newlocation()

| = [el]t

, = [€2],

_I, L2 = newlabel()
in (I,

CJUMP ¢, LI, L2
LI: 12
L2: , t)

- What’s wrong now!

Lecture 12

Compiling boolean expressions in context

» Get better code if boolean expression can jump to correct
label as soon as possible

» [e]..Ls = code that calculates e and jumps to Lt if it is true,
Lf if it is false. The code does not save the value anywhere.

> [true] Lt,Lf

[e | <e2] Lt Lf

Lecture 12

Compiling boolean expressions in context
» el && e2]

[while e do S]

Lecture 12

Compiling switch statement

» Use “jump table” and address calculation

Lecture 12

Compiling object references

» In expression e.t:

» Type of e is known; call its class C

» Location of field t within C is known; say its offset is o

» [e] will produce (I, t), where t contains pointer to object
» [e.t] = let (l,t) = [€]

t| = newlocation()
in (I; tl=t+o, tl)
» Method calls e.t(...) more complicated — will discuss in a
couple of weeks

Lecture 12

Compiling array references

» Simple rule: If A has elements of type T, and if elements

of type T occupy n bytes, then address of A[i] is address
of A + i*n.

» [Ale]] = let (I, t) = [€]

in (!
tl = &A
t2 = t*w (w size of A’s elements)
t3 = tl+t2
t4 = LOADIND t3, t4)

Lecture 12

Compiling array references

» ldea extends to multi-dimensional arrays.

Lecture 12

Machine-independent optimizations

» Machine-independent optimization = optimizations that
can be done at the level of IR —i.e. does not depend
upon features of target machine such as registers,
pipeline, special instructions

» E.g. “loop-invariant code motion”:

t1 = &A
t2 = 1*100

while (j<n) { (3= t2

. t4 = t3*4
x =x+ Al _
" t5 = t1+t4

) ’ t6 = LOADIND t5
X = X+t6
j=)+1

int A[100][100]

Lecture 12

Machine-dependent optimizations

» Machine-dependent optimization = optimizations that
exploit features of target machine such as registers,
pipeline, special instructions

» Register allocation
» Instruction selection

» Instruction scheduling

Lecture 12

