
CS 421 Lecture 12CS 421 Lecture 12
Compilation static languages, continued

Compiling in context (main for optimization)Compiling in context (main for optimization)
Assignment
Break statements
Short-circuit evaluation of boolean expressions

Switch statements
ArraysArrays
Code optimization

Thursday’s class: dynamic language execution via an
example: the Sun HotSpot runtime system – tagged
values; garbage collection

Lecture 12

NotationNotation
[S] = compiled code for S
[e] = compiled code for e[e] = compiled code for e
Use subscripts on brackets for additional arguments, e.g.
[S]L is compiled code for S, assuming S occurs within a []L p , g
switch statements labeled L.

Lecture 12

Assignment statementsAssignment statements
Old scheme: [x=e] = let (I,t) = [e] in I; x=t.
Can give poor results: [x=3] = t=3; x=tCan give poor results: [x=3] = t=3; x=t

[x=x+1] = t1=1; t2=x+t1; x=t2
Compile expressions in context of target location:Compile expressions in context of target location:

[e]x = code to calculate value of e and
store it in x. [e]x : instruction list

[x=e] = [e]x
[n]x = “x=n”
[y]x = “x=y”, if y a different variable from x; otherwise
[e1+e2]x = let t = new location in [e1]t; [e2]x; x=t+x

Lecture 12

break statementsbreak statements
break statement breaks from one level of switch or
while. Cannot translate “break” without knowing while. Cannot translate break without knowing
context.
[S]L = code for statement S, given that S occurs inside a
switch or while statement, and L is the label just after
that enclosing statement.

Lecture 12

Boolean expressionsBoolean expressions
Current scheme: boolean expressions evaluated like any other,
placing value in a temporary location:p g p y

[e1<e2] = let (I1, t1) = [e1], (I2, t2) = [e2], t = newloc()
in (I1; I2; t = t1<t2, t)

[e1 && e2] = let (I1, t1) = [e1]
(I2, t2) = [e2]

in (I1; I2; t = t1 && t2, t)

[if e then S1 else S2] = let (I, t) = [e][if e then S1 else S2] let (I, t) [e]
in (I; CJUMP t L1 L2; …)

• What’s wrong?

Lecture 12

Boolean expressions w/ short-circuit evaluationBoolean expressions w/ short circuit evaluation
Improved scheme:

[e1 && e2] = let t = newlocation()[e1 && e2] = let t = newlocation()
I1 = [e1]t
I2 = [e2]t2 []t
L1, L2 = newlabel()

in (I1
CJUMP t, L1, L2

L1: I2
L2: , t)

• What’s wrong now?

Lecture 12

Compiling boolean expressions in contextCompiling boolean expressions in context
Get better code if boolean expression can jump to correct
label as soon as possiblelabel as soon as possible
[e]Lt,Lf = code that calculates e and jumps to Lt if it is true,
Lf if it is false. The code does not save the value anywhere.

[true]Lt,Lf

[e1<e2]Lt,Lf

Lecture 12

Compiling boolean expressions in contextCompiling boolean expressions in context
[e1 && e2]Lt,Lf

[while e do S][while e do S]

Lecture 12

Compiling switch statementCompiling switch statement
Use “jump table” and address calculation

Lecture 12

Compiling object referencesCompiling object references
In expression e.t:

Type of e is known; call its class CType of e is known; call its class C
Location of field t within C is known; say its offset is o
[e] will produce (I, t), where t contains pointer to object

[e.t] = let (I,t) = [e]
t1 = newlocation()

i (I t1 t+ t1)in (I; t1=t+o, t1)
Method calls e.t(…) more complicated – will discuss in a
couple of weekscouple of weeks

Lecture 12

Compiling array referencesCompiling array references
Simple rule: If A has elements of type T, and if elements
of type T occupy n bytes, then address of A[i] is address of type T occupy n bytes, then address of A[i] is address
of A + i*n.

[A[e]] = let (I, t) = [e]
in (I

t1 = &A
t2 = t*w (w size of A’s elements)t2 = t*w (w size of A s elements)
t3 = t1+t2
t4 = LOADIND t3, t4))

Lecture 12

Compiling array referencesCompiling array references
Idea extends to multi-dimensional arrays.

Lecture 12

Machine-independent optimizationsMachine independent optimizations
Machine-independent optimization = optimizations that
can be done at the level of IR – i.e. does not depend can be done at the level of IR i.e. does not depend
upon features of target machine such as registers,
pipeline, special instructions
E.g. “loop-invariant code motion”:

int A[100][100] t1 = &Aint A[100][100]
t
while (j<n) {

x = x + A[i][j]

t2 = i*100
t3 = t2+j
t4 = t3*4
t5 = t1+t4[][j]

j++;
}

t5 = t1+t4
t6 = LOADIND t5
x = x+t6
j = j+1

Lecture 12

j = j+1

Machine-dependent optimizationsMachine dependent optimizations
Machine-dependent optimization = optimizations that
exploit features of target machine such as registers, exploit features of target machine such as registers,
pipeline, special instructions

Register allocation
Instruction selection
Instruction scheduling

Lecture 12

