
CS 421 Lecture 12CS 421 Lecture 12
Compilation static languages, continued

Compiling in context (main for optimization)Compiling in context (main for optimization)
Assignment
Break statements
Short-circuit evaluation of boolean expressions

Switch statements
ArraysArrays
Code optimization

Thursday’s class:  dynamic language execution via an 
example:  the Sun HotSpot runtime system – tagged 
values; garbage collection
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NotationNotation
[S] = compiled code for S
[e] = compiled code for e[e] = compiled code for e
Use subscripts on brackets for additional arguments, e.g. 
[S]L is compiled code for S, assuming S occurs within a [ ]L p , g
switch statements labeled L.
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Assignment statementsAssignment statements
Old scheme:  [x=e] = let (I,t) = [e] in I; x=t.
Can give poor results:  [x=3] = t=3; x=tCan give poor results:  [x=3] = t=3; x=t

[x=x+1] = t1=1; t2=x+t1; x=t2
Compile expressions in context of target location:Compile expressions in context of target location:

[e]x = code to calculate value of e and
store it in x. [e]x : instruction list

[x=e] = [e]x
[n]x = “x=n”
[y]x = “x=y”, if y a different variable from x;  otherwise
[e1+e2]x = let t = new location in [e1]t; [e2]x; x=t+x
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break statementsbreak statements
break statement  breaks from one level of switch or 
while.   Cannot translate “break” without knowing while.   Cannot translate break  without knowing 
context.
[S]L = code for statement S, given that S occurs inside a 
switch or while statement, and L is the label just after 
that enclosing statement.
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Boolean expressionsBoolean expressions
Current scheme:  boolean expressions evaluated like any other, 
placing value in a temporary location:p g p y

[e1<e2] = let  (I1, t1) = [e1],  (I2, t2) = [e2],  t = newloc()
in  (I1; I2; t = t1<t2, t)

[e1 && e2] = let  (I1, t1) = [e1]
(I2, t2) = [e2]

in  (I1; I2; t = t1 && t2, t)

[if e then S1 else S2] = let (I, t) = [e][if e then S1 else S2]  let (I, t)  [e]
in (I; CJUMP t L1 L2; …)

• What’s wrong?
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Boolean expressions w/ short-circuit evaluationBoolean expressions w/ short circuit evaluation
Improved scheme:

[e1 && e2] = let  t = newlocation()[e1 && e2] = let  t = newlocation()
I1 = [e1]t
I2 = [e2]t2 [ ]t
L1, L2 = newlabel()

in  (I1
CJUMP t, L1, L2

L1:  I2
L2:                ,     t)

• What’s wrong now?
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Compiling boolean expressions in contextCompiling boolean expressions in context
Get better code if boolean expression can jump to correct 
label as soon as possiblelabel as soon as possible
[e]Lt,Lf = code that calculates e and jumps to Lt if it is true, 
Lf if it is false.  The code does not save the value anywhere.

[true]Lt,Lf

[e1<e2]Lt,Lf
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Compiling boolean expressions in contextCompiling boolean expressions in context
[e1 && e2]Lt,Lf

[while e do S][while e do S]
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Compiling switch statementCompiling switch statement
Use “jump table” and address calculation
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Compiling object referencesCompiling object references
In expression e.t:

Type of e is known; call its class CType of e is known; call its class C
Location of field t within C is known; say its offset is o
[e] will produce (I, t), where t contains pointer to object

[e.t] = let (I,t) = [e]
t1 = newlocation()

i  (I  t1 t+  t1)in (I; t1=t+o, t1)
Method calls e.t(…) more complicated – will discuss in a 
couple of weekscouple of weeks
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Compiling array referencesCompiling array references
Simple rule:  If A has elements of type T, and if elements 
of type T occupy n bytes, then address of A[i] is address of type T occupy n bytes, then address of A[i] is address 
of A + i*n.

[A[e]]  =  let (I, t) = [e]
in   (I

t1 = &A
t2 = t*w   (w size of A’s elements)t2 = t*w   (w size of A s elements)
t3 = t1+t2
t4 = LOADIND t3,         t4))

Lecture 12



Compiling array referencesCompiling array references
Idea extends to multi-dimensional arrays.
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Machine-independent optimizationsMachine independent optimizations
Machine-independent optimization = optimizations that 
can be done at the level of IR – i.e. does not depend can be done at the level of IR i.e. does not depend 
upon features of target machine such as registers, 
pipeline, special instructions
E.g. “loop-invariant code motion”:

int A[100][100] t1 = &Aint A[100][100]
t
while (j<n) {

x = x + A[i][j]

t2 = i*100
t3 = t2+j
t4 = t3*4
t5 = t1+t4[ ][j]

j++;
}

t5 = t1+t4
t6 = LOADIND t5
x = x+t6
j = j+1
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Machine-dependent optimizationsMachine dependent optimizations
Machine-dependent optimization = optimizations that 
exploit features of target machine such as registers, exploit features of target machine such as registers, 
pipeline, special instructions

Register allocation
Instruction selection
Instruction scheduling
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